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ABSTRACT: The aim of this work is to investigate the
effect of finite element formulation and element type on
the accuracy of 3D modeling of generalized Newtonian
fluid flow in complex domains. Computer models based
on three finite element solution schemes (mixed, continu-
ous, and discrete penalty), and two element types (hexahe-
dral and tetrahedral) in a 3D framework were developed.
The well-known Carreau model was used to reflect the
rheological behavior of the fluid. To determine the validity
of the developed computer simulations, the flow of two
high-density polyethylene (HDPE) melts with different
viscosities through an extrusion die was simulated and
compared with experimentally measured data. Compari-

son showed that the three methods produced nearly the
same results with the hexahedral elements. However,
continuous penalty method using tetrahedral elements
demonstrated an extreme discrepancy from the experimen-
tal data. Discrete penalty method was unable to predict
secondary variable (pressure) accurately using tetrahedral
elements. The best results were obtained by the use of
mixed method in conjunction with tetrahedral elements.
VC 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 1607–1615, 2011
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INTRODUCTION

It is quite well-known that the use of robust numeri-
cal technique for simulation of the polymer process-
ing operation is inevitable. This is due to the non-
linearity of the governing equations and also the
complex geometries that are normally required to
form the polymer melt into final desired shape.
There are different numerical methods that are usu-
ally used such as finite difference, finite element,
finite volume, and boundary element schemes. How-
ever, owing to the greater flexibility in modeling of
complicated geometries and ability to use highly
accurate approximating approaches, finite element
method is generally accepted as the best choice for
this purpose. In addition, various types of boundary
conditions can also be applied with the minimum
level of mathematical efforts. The main difficulty asso-
ciated with the application of finite element method
for the fluid flow problems is incompressibility condi-
tion, which is imposed by the continuity equation. On
the other hand, not only the pressure term is not
included in continuity equation but also its interpola-

tion functions should be one order less differentiable
than the velocity components in momentum equa-
tions. Therefore, three submethods have been devel-
oped so far to tackle this problem, which are called as
mixed or U-V-P,1–4 continuous penalty,5–9 and dis-
crete penalty10,11 methods. These techniques have
widely been used to numerically simulate the differ-
ent flow domains of polymer processes.
Although any combination of finite element formu-

lation and element type can virtually be carried out,
the predicted results are not in the same order of reli-
ability and accuracy. Consequently, choosing a proper
element and finite element scheme, especially for the
3D incompressible flow problems is the most impor-
tant subject in this area because of its impact on com-
putational cost and efforts and also on the accuracy
and reliability of results. Most of the published works
in this subject are based on the use of the incomplete
elements (quadrilateral for 2D and hexagonal ele-
ments for 3D problems) as the development of their
finite element working equations are more straight-
forward than the complete elements such as triangu-
lar and tetrahedral elements. However, our numerical
experiments show that the hexagonal elements nor-
mally fail to discretize intricate 3D flow domains,
which are generally encountered in industrial poly-
mer processing problems. In most cases, tetrahedral
elements are alternative selections, which can be used
successfully to create finite element mesh.
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The aim of this work is to study the effect of the
combination of three above-mentioned finite element
schemes (mixed, continuous, and discrete penalty)
with two different element types (hexahedral and
tetrahedral) on the accuracy of results obtained from
numerical simulation of polymer melts in a typical
pressure flow problem. The mathematical models
were developed based on the solution of the conti-
nuity and momentum equations in 3D Cartesian
framework. Two types of hexahedral and tetrahedral
elements belonging to Taylor–Hood family12,13 were
used in this work. The well-known Carreau equation
was also used to reflect the rheological behavior of
polymer melts. The main assumptions made in the
development of the present models are: (i) the flow
of polymer is laminar and the fluid is incompressi-
ble; (ii) the flow is considered to be in a 3D Carte-
sian framework; (iii) body forces are negligible; and
(iv) the flow regime is steady state and isothermal.

To examine the validity of the selected
approaches, the flow of two polyethylene (PE) melts
through an extrusion die were compared with exper-
imentally measured pressure values and output
mass flow rate. The main justification that leads us
to assume isothermal system was based on the
experimentally measured temperature profile in the
longitudinal direction. It is shown that the maximum
temperature rise was about 1�C. Furthermore, our
numerical calculation confirmed that the tempera-
ture rising in the longitudinal direction of die is neg-
ligible. In addition, it should be noted that our main
goal was to examine the numerical effectiveness of
the developed algorithms. Therefore, any nonisother-
mal solution method can easily be joined with the
selected method.

In the following sections, we first describe the
mathematical model and then the finite element
working equations are briefly introduced. The simu-
lation results and comparison of them with experi-
mental data are presented in the next section and
finally conclusions are drawn.

MATHEMATICAL MODEL

The governing equations of the flow of an incom-
pressible generalized Newtonian fluid in a 3D Carte-
sian coordinate system in the absence of body force
are given as14:

1. The continuity equation:

r � v ¼ 0 (1)

2. The momentum equation:

q
Dv

Dt
¼ �rpþr � s (2)

In these equations, v is the velocity vector, p is the
pressure, q is the material density, and s is the vis-
cose stress tensor which is given for a generalized
Newtonian fluid in terms of rate-of-deformation
tensor D by:

s ¼ gD (3)

where g is shear-dependent non-Newtonian viscos-
ity of the fluid. The rate-of-deformation tensor is
defined as:

D ¼ rvþ ðrvÞT (4)

Viscosity (g) in this study is selected to be
described by the Carreau model14:

g� g1
g0 � g1

¼ 1þ k20
1

2
I2

� �� � n�1
2ð Þ

e�bðT�T0Þ (5)

where g0 and g8 are constant viscosity at zero and
infinite shear rate, respectively, k0 is a material time
constant known as relaxation time, n is the power-
law index, T0 is a reference temperature, b is the
temperature sensitivity coefficient, and I2 is the
second invariant of the rate-of-deformation tensor
defined as:

I2 ¼ D : D (6)

FINITE ELEMENT FORMULATIONS

As it is mentioned earlier, three finite element
schemes (mixed, continuous, and discrete penalty)
have been used in this work. Details of the working
equations of each method can be found in a number
of references.6,7,12,13 Consequently, in this section
only a brief description of each technique will be
presented.

Mixed method

In this method, both velocity and pressure are
regarded as primitive variables and discretized. The
most necessary requirement in the application of the
mixed method is the satisfaction of stability known
as the Ladyzhenskaya–Babuska–Brezzi (LBB) condi-
tion.12,15 This requirement arises from the absence of
the pressure in continuity equation and also one
order less differentiation of the pressure than velo-
city components in momentum equations. It has
been found that the mixed method in conjunction
with elements generating equal interpolations for
velocity and pressure yield inaccurate and oscilla-
tory results. These oscillations can be disappeared
by the use of elements of Taylor–Hood or Crouzeix–
Raviart family.13–14,16 We have used tetrahedral and
hexahedral elements belonging to the Taylor–Hood
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family in this study to satisfy LBB condition (Fig. 1).
In these elements, the velocity and pressure fields
are approximated using biquadratic and bilinear
shape functions, respectively, thus providing
unequal order of interpolations for velocities and
pressure.

Penalty formulation

The penalty formulation allows the elimination of
the pressure variable in the momentum equations
using:

p ¼ �kðr � vÞ (7)

where k is a large number (in order of 108–1012)
known as penalty parameter. It can be shown that if
we choose k to be a relatively large enough, the
continuity equation will be satisfied. To enforce the
continuity at the right level in the non-Newtonian
flow problems, where shear-dependent viscosity
varies locally, it is necessary to maintain a balance
between the viscosity and the penalty parameter.
Therefore, k should be expressed as a function of
viscosity, and eq. (7) is then written as:17

p ¼ �k�ðr � vÞ (8)

where

k� ¼ gk (9)

There are two schemes for the implementation of
the penalty relation to eliminate the pressure terms

in momentum equations. These are known as the
continuous and discrete penalty technique. This is
because that the elimination of the pressure variable
from momentum equations dose not yield a robust
scheme for incompressible flow, and it is necessary
to satisfy the LBB stability condition by a suitable
technique.12,13,17

Continuous penalty method

In this method, the pressure in the momentum equa-
tions is directly substituted from the penalty relation
[eq. (8)]. The obtained equations are then discretized
using the traditional Galerkin finite element
approach. However, to achieve a nontrivial solution
and satisfaction of the LBB stability condition, the
penalty terms in the stiffness matrix coefficients
must be evaluated using a reduced integration
method.13,17 In this study, standard tetrahedral and
hexahedral elements with 10 and 20 nods, respec-
tively, were used for calculating velocity and pres-
sure.13,15 In these elements, velocity and pressure are
approximated using biquadratic shape functions. It
is also found that the best results are achieved using
continuous penalty scheme when k is equal to 1010.

Discrete penalty method

In the discrete penalty method, the pressure term in
momentum equations is substituted by the discre-
tized form of the modified continuity equation.13,17

To satisfy the LBB stability condition, appropriate
interpolation relations have to be selected for veloc-
ity and pressure. Therefore, in this work, tetrahedral
and hexahedral elements belonging to the Taylor–
Hood family similar to mixed method were used to
achieve this task. The working equations of discrete
penalty method are derived using Galerkin method.
Based on numerical trial and error, the best results
for discrete penalty method was achieved choosing
k to be equal to 107.
Pressure is unknown in the mixed finite element

approach while the continuous penalty method
allows its elimination and thus the size of the global
matrix is considerably reduced. The discrete method
combines the advantages of computational economy
with the robustness of a numerical scheme in which
the LBB condition is directly satisfied.

Secondary calculations and boundary conditions

The pressure field in both penalty methods (continu-
ous and discrete) is generally found by a secondary
calculation such as the variational recovery
method.15 To complete mathematical models, the
governing equations must be solved in conjunction
with the appropriate set of boundary conditions. For

Figure 1 Tetrahedral and hexahedral elements belonging
to Taylor–Hood family elements; right-hand elements are
for pressure and left-hand elements are for velocity.
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the inlet of flow domain, average velocity and the
no-slip condition on the solid walls which are the
first-type boundary condition are used. For the out-
let, pressure and stress-free conditions which are the
second-type boundary condition are specified.

Isothermal assumption

The energy equation of the flow of an incompressi-
ble generalized Newtonian fluid in a 3D Cartesian
coordinate system is given as14:

qcp
@T

@t
þ v � rT

� �
¼ r � krT þ 2gD : D (10)

In this equation, v is the velocity vector, p is the
pressure, T is the temperature, q is the material den-
sity, cp is the heat capacity of polymer melt, k is the
thermal conductivity of polymer melt, and g is
shear-dependent non-Newtonian viscosity of the
fluid.

The use of standard Galerkin finite element
method for the solution of the convection dominated
equations encountered in polymer processing opera-
tions such as the energy equation normally gives
unstable and oscillatory results. These oscillations
disappeared by the use of the streamline upwinding
scheme. In this scheme, different weight functions
are used for convection and the other terms in
energy equations.12,15 Details of the working equa-
tions of this method can be found in a number of
references.7,13 Figure 2 represents the flow diagram
for the nonisothermal simulation applied in this
study. Our calculation indicated that the tempera-
ture rise in the longitudinal direction is negligible.
Figure 3 shows the temperature distribution for a
sample of the simulated materials at the screw speed
of 60 rpm. As it can be seen in this figure, the maxi-
mum temperature difference between inlet and out-
let of the die is 1.4�C. Consequently, the isothermal
assumption in this work is fully justified. Therefore,
there is no need to include the nonisothermal equa-
tions in the numerical scheme.

SOLUTION STRATEGY

Having used the well-known isoparametric map-
ping, the working equations of the different schemes
are cast into local natural coordinate system. The
members of the submatrix and subvector are then
computed for each element by appropriate Gauss
quadrature method. The resulting algebraic equa-
tions are assembled into a global matrix and solved
by a frontal solution algorithm18 after imposing the
appropriate set of boundary conditions. The pres-
ence of the convective terms in the momentum equa-
tions and also dependency of the viscosity on veloc-
ity gradient make the final set of assembled

Figure 2 Flow diagram of nonisothermal flow analysis.

Figure 3 Temperature distribution at screw speed of 60
rpm for LV-HDPE.
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equations nonlinear. Therefore in this work, the
Picard’s iterative procedure is used to handle the
nonlinear nature of the derived equations. The con-
vergence criterion used in this work is given by;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 Xrþ1

j � Xr
j

��� ���2
PN

j¼1 Xrþ1
j

��� ���2

vuuuut � d (11)

where Xr
j denotes the field components (velocity or

pressure) corresponding to the degree of freedom j
at iteration cycle r, and d is the convergence to toler-
ance (say, 10�3).

RESULTS AND DISCUSSION

Based on the above-described methods and algo-
rithms, a computer code was developed in FOR-
TRAN. Preprocessing and postprocessing steps in
this work were performed using an interactive com-
mercial package called GEOSTAR.19 For the investi-
gation of the effect of viscosity on the performance
of models, two grades of high-density PE (HDPE)
with different melt indices were used. These HDPEs
were supplied by Tabriz Petrochemical Co. and

Tabriz/Iran and Amir Kabir Petrochemical Co.,
Mahshahr/Iran with the trade names of HDPE-5218
and HDPE-EX3, respectively. Table I shows the
physical and rheological properties of the materials
used. The rheological properties of these HDPEs
were measured using capillary rheometer (Instron,
model 3211) at 190�C. The rheological parameters of
the HDPE melts were calculated using the Carreau
rheological model. The flow of these HDPE melts
through the die region of a single screw extruder
was simulated by the use of the mentioned com-
puter code. To verify the accuracy of various ele-
ments and methods as well as the numerical algo-
rithms, the simulation results were compared with
the experimental runs on a laboratory extruder (Bra-
bender). Figure 4 illustrates the extruder and the ge-
ometry of entrance of the die. Five screw speeds of
20, 40, 60, 80, and 100 rpm were selected in this ex-
perience. For each experiment, the pressures at three
locations and also mass flow rate were measured.
Figure 5 shows the flow domain and the applied
boundary condition of the extrusion die as well as
the locations of the pressure transducers. The tem-
perature on solid wall and inlet region was set to be
190�C. For each simulation, the measured velocity
computed by the division of the measured mass
flow rate to the area of the inlet section was selected
as the boundary condition. In addition to guaranty
of obtaining converged and accurate results, two
mesh configurations with different degrees of refine-
ment were used. Specifications of these configura-
tions are recorded in Table II. Figure 6(a and b)
shows the mesh configuration II using the men-
tioned elements. Moreover, for both element types,
higher order interpolation functions were also used.
Table III gives the calculated and experimentally
measured mass flow rates and pressure for low-vis-
cosity HDPE (LV-HDPE; see Table I for code

TABLE I
Physical and Rheological Properties of the Two PE Melts

Properties PE-5218 PE-EX3

Code LV-HDPE HV-HDPE
Power-law index (n) 0.85 0.29
g0 (Pa sn) 1130 56,600
k (s) 0.95 0.92
Melt density, q (kg/m3) 760 780
Melt Flow Index (MFI) (g/10 min) 17–19 0.4–0.7

Figure 4 (a) Instruments setup applied for measuring pressures and mass flow rates and (b) entrance of the die. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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designation) at screw speed of 60 rpm using mixed
method. It can be seen that the configuration II for
tetrahedral and hexahedral elements gives con-
verged results. Therefore, this configuration was
selected for simulations.

The experimentally measured pressures at three
zones and also the simulated pressure profiles
through center line of the die corresponding to the
screw speeds of 20, 40, and 60 rpm for LV-HDPE
and 20 and 60 rpm for high-viscosity HDPE (HV-
HDPE) using hexahedral elements with various
methods are shown in Figures 7 and 8, respectively.
As it can be seen, there is no significant difference
between the results calculated by the three finite ele-
ment methods with hexahedral elements. Table IV
represents some selected results of the simulated
and experimentally measured pressure and mass
flow rates corresponding to each screw speed for the
two HDPE grades using three finite element meth-
ods and hexahedral elements. It can be found that
there are good agreements between the simulation
and experimental results for both HDPEs grade.
Therefore, the trivial differences between simulated

mass flow rates and pressures with experimental
data reveal that the mixed, continuous, and discrete
penalty methods give nearly identical and accurate
results using hexahedral elements. The discrepancies
can be attributed to the nature of approximation
associated with each numerical technique and also
the error of the measuring of the pressures and
mass flow rates. On the other hand, the die used in
this research has been made of two main parts. The
first part is a converging region, and second part
has a simple slit geometry. Therefore, during the
discretization process using hexahedral element, tip
curves in converging region had to be eliminated.
Owing to this simplifying step, the simulated pres-
sures were found to be a little higher than that of
the experimental data. However, this difference can
be significant for more complex geometries and thus
these elements cannot be used successfully for such
domains.
In spite of the robustness and minor sensitivity of

the hexahedral elements to the selected finite ele-
ment method, its flexibility in creating the mesh for
complex domains is low. This means that they are
unable to correctly discretize curves and tip corners.
To investigate the effect of element type on model-
ing, these simulations were repeated using tetrahe-
dral elements. It is found that the results obtained
using continuous penalty method with tetrahedral
elements diverge extremely from the experimental

TABLE II
Specification of the Finite Element Mesh

Configuration Element type
Number of
elements

Number
of nodes

Ih 20-noded hexahedral 960 5073
IIh 20-noded hexahedral 1810 9312
It 10-noded hexahedral 6415 9785
IIt 10-noded hexahedral 8915 16,008

Figure 6 Finite element mesh (a) hexahedral (b) tetrahedral elements corresponding to mesh configuration II. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 5 Flow domain with boundary condition.
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data and thus this combination is not applicable for
the simulation of flow problems. This is because that
the proper choice of reduced integration points in
Gauss quadrature for tetrahedral elements cannot be
carried out as precisely as the case of the hexahedral
elements. Table V represents the simulated and
measured mass flow rates as well as pressures by
mixed and discrete penalty methods using tetrahe-
dral elements at different screw speeds. The results
show that the differences in computed mass flow
rates for these methods are negligible, and therefore
these methods give converged results using tetrahe-
dral elements.

However, comparison of the simulated and meas-
ured pressures for discrete penalty shows that the
differences between these set of data are relatively
high, and discrete penalty method is unable to
accurately predict secondary variable in this case.
This is due to the lack of sufficient accuracy in sec-
ondary calculations (variational recovery) with tet-
rahedral elements. Moreover, the definition of the
accurate reduced Gauss points for tetrahedral
elements cannot be accomplished in continuous
penalty method and thus the continuity equation is
not correctly satisfied. As it can be seen in Table V,
the simulation results obtained using mixed
method are relatively similar to measured pres-

sures, and this confirms the validity of the mixed
model. Moreover, as tetrahedral elements can com-
pletely mesh the complex geometries and it is not
required to simplify the geometries, the results
obtained by these elements are therefore more accu-
rate than those predicted by the hexahedral ele-
ments. This can be confirmed by the comparison of
the results of mixed method with hexahedral and
tetrahedral elements as recorded in Tables IV and
V, respectively.
The experimentally measured pressures at three

zones and also the simulated pressure profile in
center line of the die at various screw speeds for
LV-HDPE and HV-HDPE are shown in Figures 9
and 10, respectively. As it can be observed, a very
smoothed and nonoscillatory pressure profile has
been obtained for each screw speed. This is due to
the consistency of the interpolation functions
selected for pressure and velocity for the 10-nodded
tetrahedral elements in conjunction with a relatively
refined mesh. Therefore, in spite of difficulty in con-
sidering the pressure variable in a pure pressure
flow with mixed method, the predicted pressure
profile reveals that this finite element technique
along with tetrahedral elements can be used success-
fully to simulate the pressure flow in polymer
processing operations.

Figure 7 Simulated pressure profiles in center line of the
die at various screw speeds for LV-HDPE and hexahedral
elements. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 8 Simulated pressure profiles in center line of the
die at various screw speeds for HV-HDPE and hexahedral
elements. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

TABLE III
Simulated and Experimental Measured Results for LV-HDPE at Screw Speed of 60 rpm

for Different Mesh Configurations

Mesh

Mass flow rate (g/s) Pressure zone 1 Pressure zone 2 Pressure zone 3

Sim. Exp. Sim. Exp. Sim. Exp. Sim. Exp.

Ih 1.152 1.138 6.50 6.65 2.98 3.15 1.31 1.42
IIh 1.143 1.138 6.58 6.65 3.20 3.15 1.45 1.42
It 1.149 1.138 6.54 6.65 3.03 3.15 1.34 1.42
IIh 1.140 1.138 6.62 6.65 3.13 3.15 1.40 1.42
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TABLE V
Experimental and Simulated Pressures and Mass Flow Rates for Tetrahedral Elements

Finite element
methods
(FEMs)

Screw
speed
(rpm) PE type

Mass flow rate (g/s) Pressure zone 1 Pressure zone 2 Pressure zone 3

Sim. Exp. Err% Sim. Exp. Err% Sim. Exp. Err% Sim. Exp. Err%

Mixed 20 LV-HDPE 0.221 0.222 0.45 1.44 1.45 0.69 0.71 0.71 0 0.305 0.3 1.67
HV-HDPE 0.186 0.187 0.53 14.47 14.45 0.14 6.93 6.92 0.14 2.79 2.8 0.36

Discrete penalty 20 LV-HDPE 0.224 0.222 0.9 N/A 1.45 N/A N/A 0.71 N/A N/A 0.3 N/A
HV-HDPE 0.189 0.187 1.07 N/A 14.45 N/A N/A 6.92 N/A N/A 2.8 N/A

Mixed 60 LV-HDPE 0.655 0.658 0.46 3.93 3.95 0.51 1.85 1.86 1.61 0.9 0.89 1.12
HV-HDPE 0.537 0.539 0.37 19.97 20 0.15 9.63 9.65 0.1 4.18 4.2 0.48

Discrete penalty 60 LV-HDPE 0.662 0.658 0.61 N/A 3.95 N/A N/A 1.86 N/A N/A 0.89 N/A
HV-HDPE 0.542 0.539 0.56 N/A 20 N/A N/A 9.65 N/A N/A 4.2 N/A

Mixed 100 LV-HDPE 1.14 1.138 0.18 6.62 6.65 0.45 3.13 3.15 0.63 1.4 1.42 1.41
HV-HDPE 0.882 0.88 0.23 22.93 22.95 0.09 11.08 11.1 0.18 4.92 4.95 0.61

Discrete penalty 100 LV-HDPE 1.141 1.138 0.26 N/A 6.65 N/A N/A 3.15 N/A N/A 1.42 N/A
HV-HDPE 0.884 0.88 0.45 N/A 22.95 N/A N/A 11.1 N/A N/A 4.95 N/A

N/A, The data simulated of these conditions are not presented due to the highly deviation from experimental measure-
ments and also data calculated by other methods.

Figure 9 Simulated pressure profile in center line of the
die at various screw speeds using mixed method and tet-
rahedral elements for LV-HDPE. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 10 Simulated pressure profile in center line of the
die at various screw speeds using mixed method and
tetrahedral elements for HV-HDPE. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]

TABLE IV
Experimental and Simulated Pressures and Mass Flow Rates for Hexahedral Elements

Finite element
methods (FEMs)

Screw
speed
(rpm) PE type

Mass flow rate (g/s) Pressure zone 1 Pressure zone 2 Pressure zone 3

Sim. Exp. Err% Sim. Exp. Err% Sim. Exp. Err% Sim. Exp. Err%

Mixed 20 LV-HDPE 0.22 0.222 0.9 1.47 1.45 1.38 0.72 0.71 1.41 0.31 0.3 3.33
HV-HDPE 0.185 0.187 1.07 14.48 14.45 0.21 6.94 6.92 0.29 2.82 2.8 0.71

Continuous penalty 20 LV-HDPE 0.219 0.222 1.35 1.48 1.45 2.07 0.73 0.71 2.82 0.31 0.3 3.33
HV-HDPE 0.184 0.187 1.6 14.49 14.45 0.28 6.94 6.92 0.29 2.83 2.8 1.07

Discrete penalty 20 LV-HDPE 0.224 0.222 0.9 1.5 1.45 3.45 0.74 0.71 4.23 0.31 0.3 3.33
HV-HDPE 0.19 0.187 1.6 14.5 14.45 0.35 6.96 6.92 0.58 2.84 2.8 1.43

Mixed 60 LV-HDPE 0.653 0.658 0.76 3.99 3.95 1.01 1.89 1.86 1.61 0.91 0.89 2.25
HV-HDPE 0.535 0.539 0.74 20.07 20 0.35 9.69 9.65 0.41 4.24 4.2 0.95

Continuous penalty 60 LV-HDPE 0.651 0.658 1.06 3.91 3.95 1.01 1.9 1.86 2.15 0.87 0.89 2.25
HV-HDPE 0.533 0.539 1.11 20.04 20 0.2 9.62 9.65 0.31 4.23 4.2 0.71

Discrete penalty 60 LV-HDPE 0.663 0.658 0.76 3.92 3.95 0.76 1.9 1.86 2.15 0.92 0.89 3.37
HV-HDPE 0.544 0.539 0.93 20.09 20 0.45 9.7 9.65 0.52 4.25 4.2 1.19

Mixed 100 LV-HDPE 1.143 1.138 0.44 6.58 6.65 1.05 3.2 3.15 1.59 1.45 1.42 2.11
HV-HDPE 0.885 0.88 0.57 22.99 22.95 0.17 11.14 11.1 0.36 4.99 4.95 0.81

Continuous penalty 100 LV-HDPE 1.132 1.138 0.53 6.71 6.65 0.9 3.11 3.15 1.27 1.37 1.42 3.52
HV-HDPE 0.875 0.88 0.57 22.9 22.95 0.22 11.15 11.1 0.45 5 4.95 1.01

Discrete penalty 100 LV-HDPE 1.144 1.138 0.53 6.59 6.65 0.9 3.1 3.15 1.59 1.38 1.42 2.82
HV-HDPE 0.884 0.88 0.45 22.89 22.95 0.26 11.16 11.1 0.54 4.99 4.95 0.81
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CONCLUSIONS

The flow of two HDPEs with different melt flow
indices throughout an extruder die has been simu-
lated using three different 3D finite element methods
of mixed, continuous, and discrete penalty in
conjunction with two types of hexahedral and
tetrahedral elements. The validity of the developed
models was investigated by comparison of the simu-
lation results with experimentally measured data. It
is found that the three finite element solution
schemes in conjunction with hexahedral element
provide high level of accuracy, and nearly identical
results are obtained. However, the results obtained
with tetrahedral element showed that this element
cannot be used with continuous penalty method. In
addition, discrete penalty technique fails to accu-
rately predict the pressure profile with tetrahedral
elements, although the comparison of the mass flow
rates with experimental data confirmed the ability of
this method for prediction of the mass flow rates. It
is also found that hexahedral elements are unable to
discretize highly complex geometries and thus their
applicability in simulation is limited to simplified
domains. On the other hand, the tetrahedral element
can virtually be used to create finite element mesh
for any geometry. Consequently, the combination of
a mixed finite element technique for the derivation
of the working equations with tetrahedral elements
to discretize of the domain is the best choice for the
simulation of the flow of polymer melts in compli-
cated flow domains.
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